Untitled

News


2024-07-01

当研究室の研究成果をICEE2024で発表します。 Our research achievement is present in ICEE2024

2023-04-01

10名の4年生が研究室に配属されました

2022-11-08

新技術説明会で研究成果(機械学習とインピーダンス法を用いた二次電池の診断)を発表します。

Our research achievement is presented in JST New Technology Presentation Meetings

2022-07-21

メンテナンス・レジリエンスTOKYO2022 で研究成果を発表します。

Our research achievement is presented in Maintenance &Resilience TOKYO 2022.

https://x.com/energylab_tus?ref_src=twsrc^tfw

Research


**静電噴霧法による固体高分子形燃料電池触媒層の形成

Preparation of Polymer Electrolyte Memebrane Fuel Cell Catalyst Layer with Electrospray Deposition**

固体高分子形燃料電池の触媒層は電気化学反応が起こる非常に重要な部分です。触媒層は表面積をできるだけ大きくするとともに水素・酸素ガス,電子,イオンがスムーズに運ばれる必要があります。現在,触媒層はエアスプレーやスクリーン印刷で作ることが一般的ですが,我々は静電噴霧法と呼ばれる手法で作成し性能向上を狙っています。静電噴霧法は高電圧を用いて触媒を非常に細かな霧状にする技術で,触媒層の構造を制御することができます。また,一つ一つの触媒粒子は静電気で狙ったところに引き寄せられるため製造時の無駄も大幅に削減できます。

The catalyst layers of fuel cells are an important component where the electrochemical reaction takes place. The catalyst layer must have large surface area as well as high transportation property for hydrogen, oxygen, electron and ion. In general, the catalyst layer is prepared with air spray or screen printing techniques. We are trying to obtain high performance controlling the catalyst layer structure with electrospray technique, which applies high voltage to the spray nozzle to make very small catalyst/ionomer particles. Besides, we can improve catalyst utilization in manufacturing.

  1. S. Okuno and N. Katayama, “Gradational Structured Catalyst Layer for Proton Exchange Membrane Fuel Cells,” ECS Transactions, vol. 83, no. 1, pp. 87–91, Feb. 2018.
  2. T. Yuki, N. Katayama, M. Takahashi, K. Tsuchiya, H. Sakai, and M. Abe, “Effects of Ionomer to Carbon Ratio and Operation Conditions in Direct Glucose Fuel Cells,” ECS Transactions, vol. 83, no. 1, pp. 145–149, Feb. 2018.
  3. T. Yamanaka, N. Katayama, and S. Kogoshi, “Fabrication of Catalyst Layers for Anion Exchange Membrane Fuel Cells By Using Electrospray Deposition.,” ECS Transactions, vol. 71, no. 1, pp. 211–215, Feb. 2016.

Untitled

**水素吸蔵合金を用いた不純物を含む水素の純化・貯蔵

Hydrogen Purification and Storage Using Metal Hydride**

水素吸蔵合金は自身の1000倍の体積の水素を自身に取り込むことがてきます。 (一方,気体として水素を1/1000に圧縮するのは非常に難しいです。)現在この水素吸蔵合金を用いて水素ガス中の不純物を取り除きつつ水素を高密度で貯蔵する研究をしています。 この研究が実現すれば,一酸化炭素などの不純物を多く含む バイオマスや天然ガスから生成された水素を純化しながら貯められるカートリッジに応用できます。

Metal hydride can store hydrogen 1000 times as much as its volume. (Compressing hydrogen to 1000 atms is extremely difficult.) Our objective is storing and purifying hydrogen at the same time using metal hydride. Hydrogen derived from fossil fuel or biomass gas has a various kind of impurity which will damage fuel cells. If our idea comes true, a hydrogen cartridge which can store such hydrogen directly. That will provide improved efficiency and simplified system.

  1. J. Shimogawa, S. Miao, N. Katayama, K. Dowaki, “Design and Temperature Analysis of a Metal Hydride Cartridge Using Exhaust Heat of a Fuel Cell for Electric-assisted Bicycles,” Journal of the Japan Institute of Energy, vol. 101, no. 8, pp. 152–161, Aug. 2022, doi: 10.3775/jie.101.152.
  2. K. Dowaki, N. Katayama, T. Nagaishi, S. Kuroda, and M. Kameyama, “A System Analysis of Storage Alloy for Bio-H,” ,Journal of the Japan Institute of Energy,, vol. 96, no. 8, pp. 266–272, Aug. 2017.
  3. S. Ashida, N. Katayama, K. Dowaki, and M. Kameyama, “Study on Metal Hydride Performance for Puri cation and Storage of Bio-H,” ,Journal of the Japan Institute of Energy,, vol. 96, no. 8, pp. 300–306, Aug. 2017.
  4. S. Ashida, N. Katayama, K. Dowaki, and M. Kameyama, “Transient Impurity Concentration of Absorption and Desorption in Metal Hydride,” ,ECS Transactions,, vol. 83, no. 1, pp. 119–125, Feb. 2018.